
Unmatched Reliability TRITON PUMPS **INQUIRY FORM** Name: _____ Phone: _____ Fax: _____ Company: ____ e-mail: _____ Address: _____ Project Name: _____ City: Project Location: State/Country: _____ Zip/Code: _____ Application: _____ **Pump Performance:** Industry Type: _____ Capacity:_____ GPM _____ M³/Hr Type of Pump: Head: _____ feet _____ meters ○ Vertical Wet Well: Length: ____ Feet psi ○ Vertical Recirculator: Length: Feet **System Description**: ○ Horizontal ○ Vertical Pedestal Inlet Pipe Diameter: ____inch ___mm feet meters Inlet Length: \bigcirc Submersible: \square Explosion Proof Inlet Static Head: ____feet ____meters □ Guide Rail System Disch. Pipe Diameter: ___inch ___mm Disch. Length: _feet ___meters □ Recirculator Disch. Static Head: ____feet ____meters □ Hydraulic Submersible Net Static Head: feet meters PSI Header PSI: Property of Liquids: Other: _____ Temperature: _____ °F _____ °C PH: _____ % SOLIDS: _____ Sump Dimensions: Specific Gravity: _____ ____ ft deep x ____ ft wide x ____ ft long Viscosity (cps): _____(ssu):_____ M deep x M wide x M long ____ ft, ____meters diameter x ____deep Requested Solids Passage Size: Type/Size of Upstream Screening (if any): **Electric Motor Requirements:** ____ HP, ___ RPM, ___ Volts, ___ Ph, ____ Hz ____ KW, ___ RPM, ___ Volts, ___ Ph, ___ Hz Upstream Grit Removal (if any): Feedstock Sources:_____ Enclosure Type: _____ Describe Solids: Please tell us how you heard about Vaughan:

Fax, email, or mail form directly to: Vaughan Company, Inc., 364 Monte Elma Road, Montesano, WA 98563 Phone: 360-249-4042; Fax: 360-249-6155 E-mail: info@chopperpumps.com

V813 Rev. 1

TOTAL HEAD:

TDH = Pipeline Friction + Vertical Lift (H) + Velocity Head (V²/2g)

- Pipeline Friction = [Pipe Length (ft) / 100] x friction factor (table on form V137)

Water friction tables are suitable for sewage & most water-borne slurries up to 5% solids. For high solids loadings & heavy organic sludge, use the biological friction table on form V137.

- Vertical Lift = feet up from supply tank low-water level to high level in discharge tank, or to the center of the open discharge pipe.
 - Note: Lift may be negative (-) if the pipeline is downhill.
 - Intermediate pipeline elevations (H2) higher than the final discharge can be ignored, except that the pump shutoff head must be higher than H2 in order to initiate flow.
- Velocity Head = Energy in the liquid being discharged due to its velocity.
 - Note: Usually ignored as insignificant in low head sump pump systems.
 - For high head systems, use nozzle manufacturer's printed data, or calculate using data as follows:
 - V = Velocity of the stream at the discharge diameter (ft/sec)
 - G = Acceleration due to gravity (32.2 ft/sec^2)

SPECIAL CASES:

Pipelines with valves & fitting, add appropriate equivalent pipe length.

Pressurized supply or discharge tanks, add the discharge tank pressure, in feet, less any supply tank pressure, in feet, to the above Total Head calculation. Gauge pressure, in psi x 2.31 = head in feet. Very high solids content sludges & slurries, contact Vaughan on reliable test data for friction values.